Compactly-supported Wannier functions, algebraic *K*-theory, and tensor network states

N. Read

Yale University

QMATH13, Georgia Tech, Atlanta, October 10, 2016

field	p	class	7 1\	d = 0	d = 1	d=2
\mathbf{C}	0	A		${f Z}$	${f Z}$	$2.\mathbf{Z}$
	1	AIII	-	0	Z	$2.\mathbf{Z}$
\mathbf{R}	0	AI		${f Z}$	${f Z}$	${f Z}$
	1	BDI		$\mathbf{Z}/2$	${f Z}/2 \oplus {f Z}$	${f Z}/2 \oplus 2.{f Z}$
	2	D		$\mathbf{Z}/2$	$2.\mathbf{Z}/2$	$3.\mathbf{Z}/2 \oplus \mathbf{Z}$
	3	DIII		0	${f Z}/2$	$3.\mathbf{Z}/2$
	4	AII		\mathbf{Z}	${f Z}$	${f Z}/2 \oplus {f Z}$
	5	CII		0	${f Z}$	$2.\mathbf{Z}$
	6	С		0	0	${f Z}$
	7	CI		0	0	0

Kitaev (2009); Schnyder et al (2008)

"Tenfold way" classification of topological classes of band structures in various symmetry classes, based on topological $\it K$ -theory of vector bundles [i.e. Atiyah's $\it K^{-p}(T^d)$ and $\it KR^{-p}(T^d)$ groups] for torii $\it T^d$, up to $\it d=2$.

Z = group of integers, Z/2 = integers mod 2, k.Z = sum of k copies of Z

N.R. (2016)

field	p	class	$\pi_0 K_0(\varphi_p^{(d)})$	d = 0	d = 1	d = 2
\mathbf{C}	0	A	${f Z}$	${f Z}$	${f Z}$	$2.\mathbf{Z}$
	1	AIII	$d.\mathbf{Z}$	0	Z	$2.\mathbf{Z}$
\mathbf{R}	0	AI	${f Z}$	${f Z}$	${f Z}$	${f Z}$
	1	BDI	${f Z}/2 \oplus d.{f Z}$	$\mathbf{Z}/2$	${f Z}/2 \oplus {f Z}$	${f Z}/2 \oplus 2.{f Z}$
	2	D	$(d+1).\mathbf{Z}/2$	$\mathbf{Z}/2$	$2.\mathbf{Z}/2$	$3.\mathbf{Z}/2 \oplus \mathbf{Z}$
	3	DIII	$d.{f Z}/2$	0	${f Z}/2$	$3.\mathbf{Z}/2$
	4	AII	${f Z}$	${f Z}$	${f Z}$	${f Z}/2 \oplus {f Z}$
	5	CII	$d.{f Z}$	0	Z	$2.\mathbf{Z}$
	6	C	0	0	0	${f Z}$
	7	CI	0	0	0	0

Table 1: Table of results for topological phases that can be realized using compactly-supported Wannier functions (polynomial sections) or TNSs. First three columns: labels for symmetry classes of topological phases. Fourth column: results of the analysis of the present paper for what can be realized with polynomial sections in dimension d, up to homotopy. Fifth through seventh columns: topological phases in general non-interacting fermion systems in dimensions d=0,1, and 2, classified by $K^{-p}(T^d)$ (for \mathbf{C}) or $KR^{-p}(T^d)$ (for \mathbf{R}), for comparison with the fourth column.